Electro-osmotic flows under nanoconfinement: A self-consistent approach
نویسندگان
چکیده
منابع مشابه
Microscopic PIV measurements for electro-osmotic flows in PDMS microchannels
Electro-osmosis is the flow produced by the action of an electric field on a fluid with a net charge, which is created by the Zeta potential and confined in the Debye layer. This basic phenomenon in the electro-kinetic transport plays an important role in the microfluidic systems being explored today because it can be applied to a variety of MEMS devices. This paper presents global and point-wi...
متن کاملLattice Poisson-Boltzmann simulations of electro-osmotic flows in microchannels.
This paper presents the numerical results of electro-osmotic flows in micro- and nanofluidics using a lattice Poisson-Boltzmann method (LPBM) which combines a potential evolution method on discrete lattices to solve the nonlinear Poisson equation (lattice Poisson method) with a density evolution method on discrete lattices to solve the Boltzmann-BGK equation (lattice Boltzmann method). In an el...
متن کاملSelf-organized polyelectrolyte end-grafted layers under nanoconfinement.
Layers of end-grafted weak polyelectrolytes in poor solvent self-organize into a rich variety of structures (such as micelles, micelles coexisting with nonaggregated chains, stripes and layers with solvent-filled holes) due to the subtle competition among hydrophobic, electrostatic and steric interactions and the chemical acid-based equilibria of the weak polyelectrolyte. In this work, a molecu...
متن کاملSelf-consistent Fully Dynamic Electro-thermal Simulation of Power Hbts
A new self-consistent dynamic electro-thermal model for power HBTs is presented coupling a circuit-oriented electrical model, fitted on experimental data, with a full frequency domain thermal model. The thermal model provides the exact frequency behaviour of the device thermal impedance through a quasi-3D approach. The electro-thermal self-consistent solution is achieved, in large-signal period...
متن کاملElectro-osmotic Flow Through a Rotating Microchannel
An analytical model is presented for electro-osmotic flow through a wide rectangular microchannel rotating about an axis perpendicular to its own. The flow is driven by a steady electric field applied along the channel axis, where the upper and lower walls are charged with uniform but possibly disparate zeta potentials. The aim is to understand the interaction between Coriolis force, pressure g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: EPL (Europhysics Letters)
سال: 2011
ISSN: 0295-5075,1286-4854
DOI: 10.1209/0295-5075/95/44002